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Nonlinear Taylor vortices and their stability 
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Axisymmetric numerical solutions of the Navier-Stokes equations for flow between 
rotating cylinders are obtained. The stability of these solutions to non-axisymmetric 
perturbations is considered and the results of these calculations are compared with 
recent experiments. 

1. Introduction 
In  recent years, new experimental evidence has emerged concerning the classical 

problem of flow between rotating cylinders. Fenstermacher, Swinney & Gollub (1979) 
and Donnelly et a,?. (1979) have studied flows for Reynolds numbers up to the transi- 
tion to turbulence; this work has uncovered new modes of motion and extended the 
information on the well-established modes as described by, for example, Coles (1965). 

The transition from azimuthal flow to axisymmetric toroidal vortices was first 
described experimentally and theoretically by Taylor ( 1923), and these axisymmetric 
vortices are called Taylor vortices: the linearized theory of this transition is well 
understood (e.g. Di Prima 1961; Roberts 1965; Krueger, Gross & DiPrima 1966). 
The next transition occurs when the Taylor vortices become wavy; that is unstable 
to an out-of-phase non-axisymmetric disturbance. This transition has been discussed 
by Davey, DiPrima & Stuart (1968). Their technique is based on expanding the 
solution in powers of the parameter Re - Recrit, which is assumed small. This proce- 
dure was carried further by Eagles (1971), who also used it to find the torque on the 
cylinders (Eagles 1974). Numerical studies of this transition were performed by Meyer 
(1969). 

Much of the recent experimental work has been aimed at understanding the transi- 
tion to turbulence. This transition is not yet understood theoretically, but it has been 
discovered that sets of ordinary differential equations can give rise to Fourier time 
spectra closely resembling those obtained experimentally, and several sets of ordinary 
differential equations of varying complexity have been proposed (e.g. Rabinowitz 
1978; Yahata 1979). 

The approach used in this paper is to compute nonlinear, steady axisymmetric 
solutions of the Navier-Stokes equations which correspond to Taylor vortices. These 
solutions exist for all Reynolds numbers greater than critical, although they are not 
necessarily stable. We then consider small non-axisymmetric perturbations to these 
Taylor vortex solutions; i.e. we calculate the linear stability of these nonlinear axisym- 
metric solutions. This procedure is different from that of Davey et al. (1968) and Eagles 
( 1971); these workers considered finite-amplitude perturbations, both axisymmetric 
and non-axis-ymmetric, to the state of purely azimuthal flow. While their method 
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works well for Reynolds numbers just above critical, at larger Reynolds numbers it is 
no longer possible to use weakly nonlinear theory. The present approach is valid near 
the stability boundary of the onset of waviness; for some values of 7, the radius ratio, 
this occurs at quite large Taylor number. Our method therefore permits some explora- 
tion of the high-Taylor-number regime without recourse to three-dimensional non- 
linear computations. The physical justification for this approximation scheme is that 
the basic Taylor vortex motion persists to very high Reynolds numbers (Barcilon 
et al. 1979). The agreement between the predictions of the linearized theory presented 
here and the experimenta1 resuIts gives grounds for believing that many of the im- 
portant observed phenomena in Taylor vortex flow can be treated in this way. 

This technique requires the solution of partial differential equations in two spatial 
variables with prescribed boundary values. Many well-tried numerical methods are 
available for the solutions of such problems. Here we use the Galerkin method, which 
has been applied to similar convection problems by Clever & Busse (1 974) and Jones 
& Moore (1978), and which here gives solutions accurate to better than 1 % for Taylor 
numbers of up to about 50000 (Re N 5ReCrit). In  the Galerkin method the stability 
problem is solved by finding the eigenvalues of matrices related to the differential 
equations. Since routines are available for finding all the eigenvalues of matrices, the 
possibility of missing important eigensolutions is less than with iterative methods of 
solution. It is still unfortunately not practical to examine all types of perturbations, 
but we can use the laboratory experiments to guide us as to which types of disturbances 
are most likely to be unstable. 

We have considered here only the case where the inner cylinder is rotating and the 
outer cylinder is at  rest. The majority of the experiments relate to this case. We have 
also assumed that the cylinders have infinite length; some interesting effects are 
thereby omitted (Benjamin 1978). It was quickly realized that varying the gap ratio, 
7 = Rinner/Router, has a profound effect on the character of the problem; even a gap 
ratio of 0.9 is substantially different from a narrow gap. Most attention was paid to 
two cases; 7 = 0.8756, close to that of many of the experiments, and the 'narrow gap' 
approximation, q + 1. 

2. Basic equations 
For the nonlinear equilibrium equations, the axisymmetric incompressible Navier- 

Stokes equations can be conveniently formulated in the cylindrical polar co-ordinate 
system (r, 4, z ) ,  where z is parallel to the rotation axis. The velocity field is 

Before the onset of Taylor vortices, the velocity field is 
azimuthal, 

where R, and R, are the radii of the inner and outer cylinders, respectively, d = R, - R, 
and no is the angular velocity of the inner cylinder. After the Taylor transition it is 
convenient to define 

2, = us-u$(r) (2.3) 
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so that v is the departure of the azimuthal velocity field from the basic Couette flow 
state. The azimuthal vorticity equation is 

where 

is the Jacobian of $ and Z (cf. Jones, Moore & Weiss 1976) and v is the kinematic vis- 
cosity. The azimuthal momentum equation is then 

The boundary conditions u, = v = u, = 0 on r = R, and R, imply that 

at these boundaries, so (2.4) and (2.5) constitute a sixth-order system in r and z. 
We now adopt the narrow-gap scalings (see, for example, Krueger et al. 1966) to 

get the equations into dimensionless form in such a way that all quantities remain finite 
in the limit 7 --f 1. We introduce 5,s defined by z = gd and r = R, + xd. The equations 
(2.4) and (2.5) become, in terms of the dimensionless variables, 

where 

This definition of Ta is not standard, as a variety of definitions of T a  have appeared 
in the literature. The Reynolds number Re = 0, R,d/v = (( 1 + 7) Z'a/2( 1 - q ) ) i .  The 
narrow-gap equations can now be simply obtained from (2.7) and (2.8) by letting 
7-f 1. 

The torque on the inner and outer cylinders in these units is given by 

2nR; hvpQ0 
a '  Go = 

where h is the length of the cylinders and p the fluid density. In  a steady state 

9 
Qouter = Ginner = C* 

F L Y  102 
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Small disturbances to the equilibrium flow given by (2.7) and (2.8) satisfy 

aul -+ (UO. V)u'  + (u'.V) uo = - Vp' + VVW 
at (2.10) 

and V . u '  = 0. (2.11) 

For non-axisymmetric disturbances we can eliminate ui via (2.11) and obtain 
equations with u: and u; as dependent variables. We use the narrow-gap scalings, so 
that 4 is scaled by writing 6 = (v/Qod2) 9. If disturbances are proportional to einr+, 
we introduce k such that k$ = rn$$ which means k = m(Ta( 1 - q2)/2@7*. For a finite 
gap, m must be an integer; as q -+ 1 in the narrow-gap approximation, k must remain 
finite. The interval between the successive discrete values of k therefore becomes small. 

We eliminate the pressure from (2.10) by using the r and # components of the vor- 
ticity equation to give us the required equations. The equations are too complicated 
to give details, although they are of the form 

(2.12) 

where disturbances are proportional to e('-iw)t (a, w real) and L,, L,, Ml and Mz are 
differential operators, linear in u: and u;. The boundary conditions me 

(2.13) 

so that determining the stability of our axisymmetric equilibrium is a sixth-order 
eigenvalue problem for t~ - iw in the two independent variables x and 5. 

3. Steady axisymmetric solutions 

look for solutions such that adjacent Taylor vortices are separated by planes, so 
To solve equations (2.7) and (2.8) we expand $ and v as a Fourier series in 6. We 

m m 

@ = x $n(~)sinnac, v = vn(x) cosna[. (3.1) 
n = l  n= 0 

We now make the further expansions 
m m 

where the Tg(x) are the reduced Tchebycheff polynomials (see, for example, Fox & 
Parker 1968). In order to obtain a numerical solution, the infinite sums (3.1) and (3.2) 
are truncated after n = N and nz = M terms, respectively. When these finite sums are 
substituted into the boundary conditions (2.6), 6 N  + 2 algebraic equations result from 
equating the coefficients of sinnac and cosnag to zero. Since we have (M + 1) (2N + 1) 
unknowncoefficientsfromthe+~,,andv,,weneedafurther ( M -  3 ) N +  (M - 1 )  (N+ 1) 
algebraic equations to be derived from equations (2.7) and (2.8). There are several 
different ways of obtaining these equations. In  the Lanczos 7 method (Fox & Parker 
1968) we substitute the expansions (3.1) and (3.2) into the partial differential equations 
and equate the coefficients of T Z ( x )  sin nag for m = 0, M - 4 and n = 1, N to zero in 
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(2.7) and the coefficients of T$(x) cosnacfor m = 0, M - 2 andn = 0, N to zero in (2.8). 
I n  this way we obtain ( M -  3) N equations from (2.7) and ( M -  1)  ( N +  1) equations 
from (2.8), giving us the required total. The resulting algebraic equations are then 
solved using Newton-Raphson iteration. The nonlinear terms consist of products of 
sums which have to be written as a sum of the form 

In the finite-gap case this procedure becomes rather cumbersome as the coefficients 
involve rather complicated functions of x. We therefore adopt a collocation procedure 
(see, for example, Wright 1964) in the x direction. In  this method, we require that the 
coefficients of sinnac in equation (2.7) are equated to zero at the M - 3 points given 
by the zeros of T&--3(x); similarly, the coefficients of cosnac in equation (2.8) are 
equated to zero at the M - 1 points given by the zeros of T&-l(x). Collocation is sim- 
pler to perform, but for given M and N is not quite as accurate for this problem. 
Comparison of the two methods in the narrow-gap case indicated that both methods 
give similar accuracy for the same computer time. The collocation method is much 
easier to program. 

Even if a is prescribed, there is in general no uniqueness of solution. When T a  is 
just above critical, only one solution was found closely corresponding to the form 
of the fist eigenfunction of the linear problem. At higher Ta,  linear solutions corres- 
ponding to multiple rolls in the radial and axial directions become unstable, and 
nonlinear solutions corresponding to these solutions exist. Care was taken to ensure 
that the results presented here all relate to the stability of the single-roll solution, 
which corresponds to the solution of the linearized axisymmetric problem with the 
smallest critical Taylor number. We choose a = 3-13 which is close to that value which 
gives minimum critical Taylor number for 0.75 < q < I ,  except in the comparison 
with Rogers & Beard (1969) where q = 0-5 and we use a = 3-1631. 

The value of a is given experimentally by the number of cells that fit into the Couette 
apparatus. This number is not uniquely determined (e.g. Coles 1965); for example, 
Gorman & Swinney (1980) found stable states with 16, 17, 18, 19 and 20 cells in an 
apparatus with aspect ratio 20, corresponding to values of a ranging from 2.5 to IT. 
The results presented here are not generally very sensitive to changes in a of this order. 
We note that to maximize the torque would require values of a greater than 3.13, so 
choosing a to maximize torque would be inappropriate (DiPrima & Eagles 1977). 

The numerical results for the torque were in agreement with those of Meyer (1 969), 
Rogers & Beard (1969) and, in the range when finite-amplitude expansions hold, with 
Davey (1962). In  table 1 we compare various calculations of the non-dimensional 
torque for the case q = 0.5. We show how our calculations compare with the numerical 
calculations of Rogers & Beard (1969), who used finite-differences with 40 mesh points 
in the radial direction and Fourier expansion with truncation at N = 6 in the axial 
direction. We also give the values found by Davey’s (1962) amplitude expansion and 
the experiments of Donnelly & Simon (1960). To give some idea of how t,he accuracy 
depends on the truncation parameters M and N we show the present results with 
M x N = 13 x 6,13  x 7 and 14 x 6. In table 1 all calculations have q = 0.5, a = 3.1631; 
TaCrit for these values is 3099.6. 

Figure 1 shows the torque as a fimct.ion of Reynolds number for a = 3.13 in the 
9-2 
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MxN 
I 

4 7 Rogers Donnelly 
Ta 1 3 x 6  1 3 x 7  1 4 x 6  &Beard Davey &Simon 
3 500 2-813 013 2.813013 2.8 13 0 15 2.81 2.81 2.80 
7 500 3-587 817 3.587 816 3.587 786 3.59 3.40 3.50 

15 000 4-186 1 4.1870 4-1858 4.18 3-65 4-09 
30 000 4-877 1 4.805 3 4.777 7 - - 4.74 

TABLE 1.  Dimensionless torque a/G,. 

I I I I 1 I I 1 I I I 1 I 
3500 

3000 

2500 

2000 

100 200 300 400 500 
~ 

600 700 800 900 1000 1100 1200 
Re 

FIQURE 1. The torque, a, is plotted a.gainst Reynolds number, Re. Curve (a) uses the nonlinear 
axisymmetric solution with 7 = 0.95 and axial wavenumber a = 3.13. (a) is the curve obtained 
with the amplitude expansion of Davey (1 962). + + + , Experimental results of Donnelly & 
Simon (1960). 

q = 0-95 case, using the full finite-gap equations. Also shown is the equivalent curve 
from Davey (1962) and the experimental results of Donnelly & Simon (1960). As 
noted by Meyer (1969), the predicted torque is considerably larger than the observed 
torque. Eagles (1974) showed that at fixed a the presence of waviness in the cells 
reduced the torque and for m = 4 obtained good agreement with observation near 
Re = Recrit; Meyer (1969) showed that for purely axisymmetric cells decreasing a 
also reduced the torque. In  order to obtain agreement with experimental values purely 
by decreasing a, a value of a = 1.8 in the axisymmetric solution is required. The 
numerical experiments are in reasonable agreement with Batchelor’s (1960) asymptotic 
torque law; a log-log plot of the numerical experiments gives G a Re1.52 at high 
Reynolds numbers compared with Batchelor’s law of G cc Re1’5. 
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FIGURE 2. (a) Streamlines, (b) contours of equal azimuthal velocity, (c) potential vorticity dis- 
tribution for the narrow-gap caae with Ta = 50000, a = 3-13. In the contour plots, the contours 
are equally spaced. ( d ) ,  (e) and (f) are the analogous pictures in the case 71 = 0.8756. 

In  figure 2 the streamlines, potential vorticity and azimuthal velocity contours are 
shown. It is interesting to compare with the analogous pictures for BBnard convection 
(e.g. Moore & Weiss 1973). Both cases shown are for Ta = 50000, a = 3-13: cases (a) 
to ( c )  are for narrow gaps and ( d )  to (f) 7 = 0.8756. The 7 = 0.8756 case displays more 
asymmetry than the narrow-gap case; thus the speed of the inviscid core is 0.5 times 
the speed of the inner cylinder in the narrow-gap case, but is considerably less in 
the case q = 0.8756. Also of note is the flat distribution of potential vorticity in 
the core region (Batchelor 1956). 
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4. Small perturbations to the Taylor vortices 
We now consider disturbances to the axisymmetric solutions proportional to eimC, 

or, in the narrow-gap case, cc eskJ. We write 

so we are considering only disturbances which have the same axial period as the 
Taylor cells. On substituting these into the equations (2.12) and (2.13), the stability 
problem separates into two parts; the in-phase modes ut and the out-of-phase modes 
uo. Since there is no interaction between these modes, we solve the two cases separately. 

In  both cases, Wn and V,  are expanded in a Tchebycheff series, and the resulting 
expansions are put into equations (2.12). As with the axisymmetric equations we 
used the Lanczos r method for the narrow-gap cases and collocation for finite gaps. 
In  either case, the system is truncated at  n = N and m = M ,  and the number of un- 
knowns is reduced by applying the boundary conditions (2.13). The coefficients W,, 
and V,, are put together to create a single vector ai, and the linear eigenvalue problem 
then has the form 

((T - iw) La = Ma. (4.2) 

where L, M are complex matrices. These matrix equations were solved using routines 
in the NAG (Numerical Algorithm Group) library, reference numbers F04ADF and 
FO2AJF. When required, the eigenvectors aj  can be found using routine FO2AKF 
and the velocity fields corresponding to the perturbation can be obtained. Values of 
M up to 14 and N up to 8 were found to be practical: this enables the eigenvalues to 
be found for values of l'a up to 50000 (Re N- 5ReCrit). The upper limit to M and N 
is determined principally by the storage requirement. When the basic flow was purely 
azimuthal, the program gave results which agreed with those of Roberts (1965). 

The out-of-phase modes are the most important, as found by Davey et al. (1968). 
These perturbations turn the axisymmetric vortices into wavy vortices. In  figure 3, 
the stability boundary for the onset of the wavy mode is shown. Also plotted is the 
corresponding curve for the onset of Taylor vortices from Roberts (1965). As is clear 
from figure 3, the usual wavy mode of instability is not found when r] < 0-75 and 
Ta < 12 500. At Ta = 24000 the stability boundary is at 7 = 0.77; a t  Ta much larger 
than this the program is no longer sufficiently accurate to determine r] to better than 
1 yo. For r ]  > 0-8 the m = 1 mode is the first to become unstable, but for Ta > 7000 and 
7 < 0.77 the m = 3 mode determines stability. Also shown are the experimental results 
of Zarti & Mobbs (1979) for the appearance of 'strong vortex waves'. They also have 
a point at Ta = 24TuCrit, = 0.725 which is a t  too high a Taylor number for reliable 
calculation by this method, but does indicate that the rapid increase in Ta for the 
onset of waviness as 7 is reduced from 0.8 to 0.7 predicted by these calculations is 
correct. It would be of interest to obtain more experimental information for cylinders 
with 7 between 0.7 and 0.8 to compare with figure 3: such experiments must, of course, 
have large aspect ratio for meaningful comparison. 
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Ta 

0.65 0.70 0.75 0.80 0.85 0.90 0.95 
t) 

FIGURE 3. Curve (a) is the stability boundary for the onset of axisymmetric Taylor vortices 
(Roberts 1966). The curves m = 1, m = 2 and m = 3 are curves of neutral stability for the non- 
exispmetric modes; in the region above and to the right of the envelope of these curves the 
vortices are wavy. The axial wavenumber a = 3.13. 
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FIGURE 4. The growth rate, u, is shown es a function of m, the azimuthal wavenumber. Curves 
for Re = 1.2Rec,,, 1*5Re,,,,, 2Re,, and 4ReC,, are shown. Re,,, = 118.4. Axial waveniimber 
a = 3.13 and q = 043756 in all cases. u ie measured in units of vlda. 
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in 
FIGURE 5. The phase speed, w/m, is shown as a function of m, azimuthal wavenumber. Curves for 
Re = 1.2Re,,,, l.5Red,, 2Rec,,, and 4Rec,,, a,re shown. Axial wavenumber, a = 3-13 and 
9 = 0.8756 in all cases. w/m is measured in units of a,. 

Although the longest waves are the first to become unstable for r ]  > 0.8, as Ta is 
increased values of m greater than 1 become the fastest-growing mode, and thenumber 
of unstable m’s increases. In figure 4 we show the growth rate as a function of m at 
various Ta, for r] = 0.8756. The range of unstable modes (m 5 12) is in agreement 
with the range of modes observed experimentally (Donnelly 1979, private communi- 
cation). As observed by Coles, a t  given Re several states with differing m can be 
found experimentally, so observations cannot pick out a ‘preferred’ mode; however, 
the positions of the maximum growth rate in figure 4 do correspond with commonly 
observed states (Donnelly et al. 1979; Fenstermacher et al. 1979). 

In the narrow-gap case, the growth rates are considerably larger than for finite gaps. 
The k-value for maximum growth rate increases rapidly as Ta increases; indeed, the 
position of maximum growth rate tends to infinity at values of Ta below 2Tacri,. 
The reason for this behaviour appears to be that the q5 derivatives in the viscous stress 
term are neglected in the narrow-gap approximation. 

As k -+ 0 in the narrow-gap approximation, u, and w --f 0 for the wavy mode; this 
k = 0 mode corresponds to a neutral out-of-phase axisymmetric mode. It corresponds 
to a shift of the whole Taylor vortex pattern by a small amount in the axial direction. 
For values of r ]  close to 1, the m = 1 mode can be described approximately as a shift 
of the vortex pattern up on one side of the cylinder and down on the other. If the 
cylinders have end-walls, this neutral axisymmetric solution is no longer possible, so 
i t  is perhaps not surprising that the wavy mode is strongly damped if the aspect ratio 
h/d is not large (Cole 1976). 

The phase speeds, w/m, of waves of differing m are approximately constant. In 
figure 5 we therefore plot w/m, measured in units of R,, as a function of m, for various 
Reynolds numbers. The frequencies are in good agreement with the experiments of 
Coles, with r ]  = 0.874, and Donnelly with r] = 0.8756; at Re = 4ReCri, we find a phase 
speed of 0.37R0 compared to the observed value of 0*35R,. Since we are ignoring the 



Stability of Taylor vortices 259 

nonlinearities associated with the non-axisymmetric components of the motion, this 
agreement is somewhat surprising; a possible explanation is that it is the azimuthal 
speed of the inviscid core which principally determines the phase speed. The pertur- 
bations are approximately stationary in the frame of reference of this core. 

In the narrow-gap case, this core moves with speed close to &no, and this is reflected 
in the fact that the phase speeds are always near in, if the gap is sufficiently narrow. 
This has been confirmed experimentally by Donnelly (1979, private communication). 

The in-phase modes were examined for the case 7 = 0.8756 up to Re = 6Recrit. No 
unstable in-phase modes were found, and no mode appeared to be moving towards 
instability. 

Up to Re = 5Recrit in the case 7 = 0.8756 only one unstable out-of-phase mode 
was found for given m, corresponding to the usual wavy mode. However, as Re is 
increased in the neighbourhood of 5Rec,, there is a second mode which is moving 
towards instability. The spatial structure of the mode is rather similar to that of the 
wavy mode, as is the location of fastest growth rate as a function of m. It is estimated 
that this mode will become unstable in the vicinity of Re 21 10ReCrl,; this mode may 
be connected with thefe mode (Gorman & Swinney 1979). New numerical techniques 
will be needed to confirm this. 

5. Conclusion 
The method of approximating three-dimensional wavy vortices by perturbing about 

axisymmetric Taylor vortices has the merit of requiring only the solution of two- 
dimensional partial differential equations. These equations can be solved quite 
accurately by numerical methods for a wide range of Taylor numbers. The results 
obtained here using this method show agreement in some detail with experimental 
results. In  particular, the location of the stability boundary (figure 3) agrees with the 
results of Zarti & Mobbs, although more detailed comparison would be desirable. 
The phase speeds and the location of maximum growth rate as a function of m are 
also in satisfactory agreement with observation; it might be hoped that this agree- 
ment could be further improved if it proves possible to develop a weakly nonlinear 
theory. Also of note is the result that the phase speed is close to one half of the inner 
cylinder speed for very narrow gaps, in agreement with the recent observations of 
Donnelly (1979, private communication). 

The most important result in this work seems to be the nature of the stability 
boundary between rtxisymmetric Taylor vortex flow and wavy vortex flow shown in 
figure 3; in particular the rapid rise of the boundary as 7 moves down from 0.8 to 0.7. 
This raises the possibility of finding amplitude equations to describe the development 
of the linear modes; such a procedure requires rt ‘small’ parameter, so such equations 
would be valid near the stability boundary of figure 3. This region covers an area at 
high Taylor number where many interesting phenomena are experimentally observed. 
This region of the Ta,  r] plane therefore represents an area where theory and experi- 
ment might come together. 

I am indebted to Professor R. J. Donnelly for access to experimental results, some 
unpublished, and for many helpful comments. I am grateful for useful conversation 
with Professor J. T. Stuart. I also acknowledge the co-operat,ion of the Ncwcastle 



260 C. A .  Jones 

University Computing service for the uae of the IBM 370/168 on which the com- 
putations were performed. 
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